

Technical Data SheetOPUS B6 ECO Full

1 Notes and Warnings

Attention!

This description is not a substitution for the concerned product's documentation. Please do read the documentation including the manuals carefully before dealing with this product. If the safety instructions in the documentation are not followed dangerous situation can occur that can result in damages, injuries and/or death by high voltage or wrong handling. In case you do not have the correct documentation, you can order it by contacting opus-

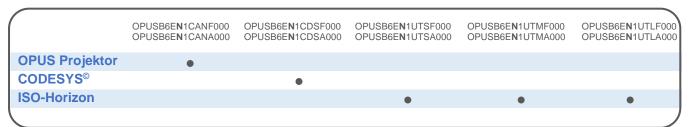
support@topcon.com. Only properly trained personnel with the correct qualification is allowed to handle the device.

Attention!

Do not open the housing to avoid danger to high voltage. Before touching the electric assemblies make sure that the electricity is switched off completely. If the front panel is broken the device needs to be taken out of service due to risk of injury. If perceivable damages on the device exist that can compromise the functionality, it must be taken out of service due to the danger of malfunctions. These particularly include damages to the LCD display, damages to the keyboard, damages that compromise the protection level and damages to the encoder knobs.

Please note:

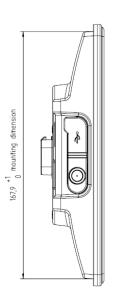
All content is subject to change without notice. Errors and omissions excepted.

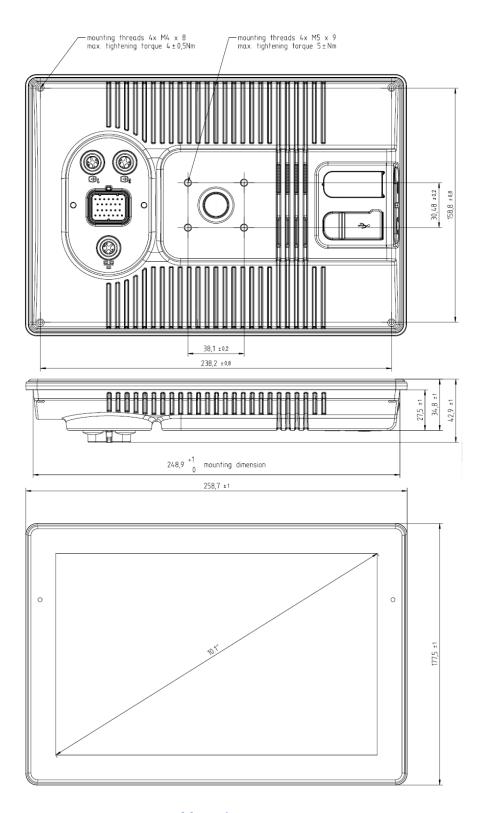

Mounting and Handling

- Do not use the cable as a handle to carry the device.
- Mounting in clean working environment only.
- Do not mount the device under the use of violence because it can cause damage.
- The device must be mounted by trained personnel only into especially designed and tested system.
- The device may not be opened or disassembled.
- The device is to be cleaned with a moist fuzz free cotton cloth. If necessary, a mild cleaning agent may be used. Do not use acid or abrasive cleaning agents.
- The device is to be stored in a cool and dry environment and to be protected against sunshine
- If the environmental temperature is beneath 10°C the reaction time of the display increases.

2 General Information

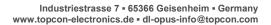
Order numbers


This documentation is valid for **OPUS B6** order numbers as follows:



The neutral version (N) will substitute the portrait (P) and landscape (L) versions.

Dimensions



Housing

Aluminium die cast Powder coated

Mounting

- Landscape or portrait
- Standalone
- In-dash

3 Display

Type: TFT Color Graphic LCD with LED

backlight

Size: 10,1", 259 mm (W) x 175 mm (H)

Resolution: 1280 x 800 px (WQVGA), 15:9

Colors: 16.7 Mio.

Brightness: typ. 1000 cd/m²

Contrast Ratio: typ. 800:1

4 Input Devices

Touch Capacitive Touch

Indicators and Sensors Light sensor

1 Multicolor LED

5 Electronics

Processor platform

CPU: Freescale I.MX6®, Quad, 1000 MHz

Mass storage: 8 GByte (minus space for OS &

application)

RAM: 2 GByte

RTC: Buffered by gold cap

Buffered for 2 weeks at Tambien

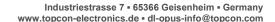
Deviation max. 1 s/day

Speaker Up to 90 dB @ 10 cm distance

(max. @ ~8kHz)

Audio 1 x Audio output (left, right, GND)

AC97 compatible


Output power: approx. 50mW

Current consumption (without external load), max

Power Mode	Current at 13,5 V DC	Current At 27 V
On	TBD	TBD
Low-power	TBD	TBD
Sleep	TBD	TBD
Off	TBD	TBD

Silent Wake-Input

Input which can be used for Silent-Wake-On of the OPUS to reduce visible boot-time Active on positive edge

Power supply

System supplied through terminal 30 (battery +, see pinout) and 31 (battery -, see pinout).

Terminal 15 (ignition) to be used to switch on/off.

Operating voltage range: 8 ... 36 V DC.

Short circuit protection.

Over-voltage protection up to 48 V for max 5 min

Over-voltage protection up to 48 V for max. 5 min. Inverse polarity protection up to -48 V DC for max. 5 min.

6 Interfaces

CAN Bus

4 x CAN-Interface according to ISO 11898, CAN-specification 2.0 B active, up to 1 Mbit/s (default 250 Kbit/s, possible 10Kbit/s, 20Kbit/s, 50Kbit/s, 83.3Kbit/s, 111.1Kbit/s, 250Kbit/s, 500Kbit/s, 800Kbit/s, 1 Mbit/s)

RS232

1 x RS232-Interface

Type: EIA232 (only RXD, TXD, GND)

Speed: max. 115.200 Kbps

USB

Host 2.0

Side connector: 1 x Type A High speed

Guaranteed 900 mA @ 5V

Back connector: 1 x Type A High speed

Guaranteed 900 mA @ 5V

Wireless-Interface

Via the USB Back connector, a wireless interface can be optional added.
E.g. LM816 for WIFI

Ethernet-Interface

1 x 10/100 Mbit/s Base T

Alternative:

1 x Automotive Ethernet Interface

Video-Interface

2 x analog video input, 1Vss Camera control output (open drain) for special functionality (mirror, shutter, heating etc.) Camera supply output guaranteed 300mA @ 12VDC

7 Connectors

Connectors

Main Typo-AMP 1437288-6

Mating connector (customer) Typo-AMP 3-1437290-7

Mating crimp contact (customer)

Typo-AMP 3-1447221-4

Dummy Plug (customer) Typo-AMP 4-1437284-3

OPUS displays in the industrial sector are only intended to use with cable length less than 30 meters.

Video- M12 round connector, female, 5-pole, Connector B-coded acc. to EN 61076-2-101

Ethernet- M12 round connector, female, 4-pole, **Connector** D-coded acc. to EN 61076-2-101

8 Software

Operating System Linux Kernel 4.14.0 or higher

Application Programming

- OPUS Projektor
- COESYS 3.x
- C/C++
- ISO-Horizon

9 Testing and Verification

CE-Compliance

EU Directive 2014/30/EU (EMC) according to

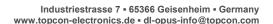
- EN 13309: Construction machinery Electromagnetic compatibility of machines with internal electrical power supply
- EN ISO 14982: Agricultural and forestry machinery Electromagnetic compatibility Test methods and acceptance criteria
- EN 50498: Electromagnetic compatibility (EMC). Product family standard for aftermarket electronic equipment in vehicles.
- *EN 61000-6-2*: Electromagnetic compatibility (EMC). Generic standards Immunity for industrial environment
- *EN 61000-6-4*: Electromagnetic compatibility (EMC). Generic standards Emission standard for industrial environment.

EMC Emission radiated

LIVIC LIIIISSIOII I a	uiateu
30-75 MHz	$62\text{-}521\text{dB}(\mu\text{V/m}) - \text{QP} - 120\text{kHz}$
	$52\text{-}421\text{dB}(\mu\text{V/m}) - \text{AV} - 120\text{kHz}$
75-400 MHz	$52\text{-}632dB(\mu V/m)-QP-120kHz$
	$42\text{-}532dB(\mu V/m)-AV-120kHz$
400-1000 MHz	$63dB(\mu V/m)-QP-120kHz$
	$53dB(\mu V/m) - AV - 120kHz$
1000-2500 MHz	$73dB(\mu V/m) - P - 120kHz$
	$53dB(\mu V/m) - AV - 120kHz$
2500-6000 MHz	$80dB(\mu V/m) - P - 1000kHz$
	60dB(µV/m) – AV – 1000kHz

QP: Quasi-Peak AV: Average P: Peak

- 1: Value decreases linearly with the logarithm of the frequency.
- 2: Value increases linearly with the logarithm of the frequency.


EMC Immunity radiated

20MHz to 800MHz with amplitude modulation 800MHz to 6GHz with pulse modulation.

30V/m for the radiated field (absorber lined chamber) testing method (ISO 11452-2) in vertical and horizontal polarization.

OR/AND

60mA for the Bulk Current Injection (BCI) testing method (ISO 11452-4)

EMC Emission conducted

12V-System (Maximum values) **24V-System** (Maximum values)

Positive slow pulses: +37V

Negative slow pulses: -75V

Negative slow pulses: -150V

Positive fast pulses: +75V

Negative fast pulses: -112V

Negative fast pulses: -150V

12 V-System 24 V- System

Test Pulse 1 Us=-450V; FS: C Us = 112 V; FS: C Test Pulse 2a Us=+55V; FS: B Us=+55V; FS: B Test Pulse 2b Us=+10V; FS: C Us=+20V; FS: C Test Pulse 3a Us=-165V; FS: A Us=-220V; FS: A Test Pulse 3b Us=+112V; FS: A Us=+220V; FS: A Test Pulse 4 Us₆=6V; Us=6.5 V FS: B Us6=6V; Us=10V FS: B

(Starting profile)

Load Dump Us=+79V; FS: C Us=+151V; FS: C

FS: Function Status

Electrostatic Discharge

+/- 8kV contact discharge; FS: A +/- 15kV air discharge; FS: A

EMV Susceptibility Conducted

Frequency: 150kHz-80MHz; U=10V; AM: 1kHz, 80%; FS: A

Burst

tr=5ns; td=50ns; Burst duration: 15ms;

Period: 300ms; t=5min; FS: B Power-lines: US=+/-2kV Signal-lines: US=+/-1kV

Surge

tr=1.2us; td=50us; Amount: 5; Wait-time: 60s; FS: B

Power-lines: US=+/-0.5kV

E1 – Type approval

EU Directive ECE R 10.4

Protection Level (IP Code)

IP 66 according to ISO 20653: Road Vehicles – Degrees of protection (IP-Code) – Protection of electrical equipment against foreign objects, water and access

Electrical

12 and 24V-Systems according to:

Inverse Polarity resistance

5min @ -48V (no defect)

Over voltage resistance

5min @ +48V (no defect)

Start behavior

Start over Temperature

Start at TRoom; decrease in 5°steps to TMin; go to TRoom; increase in 5°steps to THigh; Start DUT at each T;

Successful start expected

Short circuit strength

Connect each Pin of Main-, Video- and Ethernet-Connector for 5 Min to GND and for 5 Min to 36V; FS: C

Superimposed alternating voltage

Triangle signal, frequency sweep: 50Hz-25kHz-50Hz inside 60s; FS: A

Level	12 V	24 V	
AC peak-to-peak UPP1	1VAC	4VAC	-
AC peak-to-peak UPP2	2VAC	4VAC	
AC peak-to-peak UPP3	4VAC	10VAC	

De-/Increase Supply Voltage

Sweep Voltage UMin-0V-UMin with 0.5V/min; FS: D

Drop in Supply Voltage

ystem 24 V System	
=UMin; US=4.5V UStart=UMin; US: 0ms; FS: B td=100ms; FS: B	=9V
	=9

Battery less Operation

12 V System	24 V System	
U1=10V; U2=18V; t=5min; FS: A	U1=20V; U2=38V; t=5min; FS: A	
(=0111111, 1 0.71	t=011m1, 1 0. 7 t	

Mechanical

Vibration, noise

Frequency [Hz]	PSD [(m/s²)/Hz]
10	20
20	36
30	36
141	1.64
200	1.93
300	1
2000	1

32h per Axis; FS: A

Vibration, sinusoidal

Resonance sweep

Frequency	Displacement	Acceleration
2 Hz	+/- 1 mm (2 mm PtP)	(0.016 g)
10 Hz	-	2 g
2000 Hz	-	2 g

1 Octave/minute, 30min per resonance

Endurance Test:

Frequency	Displacement	Acceleration
5 Hz	+/- 0.75 mm (1.5 mm PtP)	(0.075 g)
57.5 Hz	-	5 g
2000 Hz	-	5 g

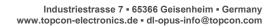
0.5 Octave/minute, 8 h per resonance. FS: A

Mechanical shock

Part 1: 300m/s², 18ms, 10 times per axis/direction; FS: A Part 2: 500m/s², 11ms, 3 times per axis/direction; FS: A Part 3: 500m/s², 6ms, 10 times per axis/direction; FS: A Part 4: 400m/s², 6ms, 4000 times per axis/direction; FS: A

Drop Test

Drop the DUT on each side and each edge from a high of 1m on a concrete floor. No damage or visible damage.


Package

Drop Test

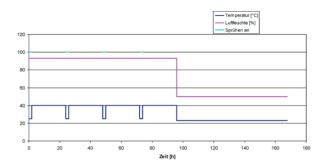
Drop the DUT inside the package on each side and each edge from a high of 1m on a concrete floor.

No damage of the DUT

No cracks to the package

Climate

Start spray resistance


Part 1:

7 cycles at 24h (8h spraying; 16h rest)

salt concentration: 5%

Part 2:

4 cycles at 168H; 1 cycle:

Chemical resistance

Apply once a day, for three days, the following chemicals with a brush over the exposed surface. Inspect without rinsing immediately after-wards and after 100h.

Alcohol, Antifreeze liquid (Ethyl-glycol), Diesel oil, Domestic Ammonia, Gasoline, Hydraulic oil 10W40, Liquid lime, Motor oil, NPK Chemical fertilizers 20 10 20, Windscreen cleaning mixture, Ammonium Nitrate and Ammonium Phosphate fertilizers, Bovine Effluent - (up to 5% propionic acid), Diesel fuel, STOU (Super Tractor Universal Oil) lubricating oil.

Damp heat steady

21days @+40°C and 93%r.H.; FS: C

Damp heat cyclic

6 cycles (each 24h); TLow=+25°C; THigh=+55°C

Humidity: >= 93%r.H.; FS: A

Temperature/Humidity cyclic

10 cycles (each 24h); TLow=-10°C; THigh=+65°C Humidity: = 80-96%r.H or uncontrolled.; FS: A

Operating temperature

Storage temperature

24h @ -30°C; FS: A 96h @ +75°C; FS: A 24h @ -40°C; FS: C 48h @ +85°C; FS: C

Max. value with reduced backlight brightness

Temperature cycling

30 cycles (each 8h); TLow=-30°C; THigh=+75°C; FS: A

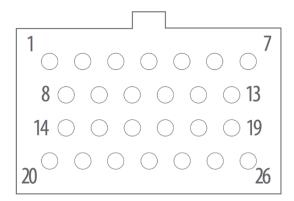
Temperature shock

100 cycles (each 2h); TLow=-30°C; THigh=+75°C; Tchange: <30s; FS: C

UV resistance

Over-all time: 1500h

Cycle: 8h UV at +60°C, 4h 95%r.H. No material damage, No visible change

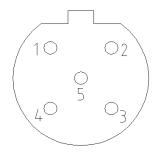


10 Pinout

Main connector pinout

Din No	Accimumant	Decemention
Pin No.	Assignment	Description
1	VCC	supply voltage +; terminal 30
2	Ignition Input	ignition input; terminal 15
3	GND	supply voltage -; terminal 31
4	Wake	Wake Input, "Doorswitch"
5	Audio Out L	Audio line out, Stereo
6	Audio Out R	Audio line out, Stereo
7	Audio GND	Audio line out, Ground
8	CAN1H	CAN 1 high
9	CAN1L	CAN 1 low
10	CAN2H	CAN 2 high
11	CAN2L	CAN 2 low
12	CAN3H	CAN 3 high
13	CAN3L	CAN 3 low
14	CAN4H	CAN 4 high
15	CAN4L	CAN 4 low
16	RS232 RxD	RS232 receive data
17	RS232 TxD	RS232 transmit data
18	RS232 GND	RS232 GND
19		Not connected
20		Not connected
21		Not connected
22		Not connected
23	SERV_EN	service enable
24		Not connected
25		Not connected
26		Not connected

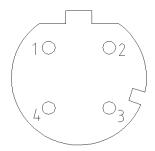
View on rear side of the OPUS B6



Video connector pinout

Rou	nd connector, 5 pins, M12
1	VidSig+
2	Switch
3	Power 12V
4	Power GND
5	VidSig GND

Video connector, M12, female, 5 pins, b-coded, View on rear side of the OPUS B6-Eco



Ethernet connector pinout

1	ase-Tx d connector, 4 pins, M12	
1	TD+	
2	RD+	
3	TD-	
4	RD-	

Automotive Ethernet	
Rou	und connector, 4 pins, M12
1	D+
2	n.c.
3	D-
4	n.c.

Ethernet connector, M12, female, 4 pins, d-coded, View on rear side of the OPUS B6-Eco

